اتومبیل های خودران چگونه به واقعیت تبدیل می شوند؟ ( کاربرد دیپ ل
دهه گذشته شاهد پیشرفت فزاینده ای در فناوری اتومبیل های خودران بوده ایم که عمدتاً از پیشرفت در زمینه دیپ لرنینگ و هوش مصنوعی ناشی می شد. در آینده ای نه چندان دور اتومبیل های خودران ایمن ترین وسایل نقلیه در جاده ها خواهند بود. اگرچه امروزه بسیاری از وسایل نقلیه از ” سیستم های کمک راننده ” استفاده می کنند؛ اما همچنان اتومبیل ها نیازمند انسان ها هستند. صنعت خودروسازی با استفاده از مجموعه ای بسیار قوی تر از داده های حسگر و امکان پردازش سریع این داده ها؛ در پی ایجاد یک اتومبیل کاملا مستقل است.
ظهور اتومبیل های خودران در زندگی انسان ها باعث کاهش تصادفات جاده ای، کاهش ترافیک و تسهیل رفت و آمد در شهرهای پر ازدحام خواهد شد.
آنچه در این نوشته خواهیم داشت
نقش دیپ لرنینگ در پیشرفت اتومبیل های بدون راننده
در طی یک دهه گذشته، یادگیری عمیق و هوش مصنوعی به اصلی ترین فناوری ها در پیشرفت بسیاری از تکنولوژی ها از قبیل روباتیک، پردازش زبان طبیعی، سیستم های ضد کلاهبرداری و اتومبیل های بدون راننده تبدیل شدند.
در این راستا، هوش مصنوعی، دیپ لرنینگ و شبکه های عصبی می توانند در این سه زمینه موثر باشند:
• استفاده از داده های حسگر به منظور طراحی صحنه
• تشخیص علائم و قوانین رانندگی
• یادگیری مداوم به منظور بهبود ایمنی و عملکرد
در حال حاضر، سیستم های کمک راننده، عملکردهای رانندگی نظیر: مسیریابی، کنترل حرکت بین خطوط، جلوگیری از تصادف و پارک کردن را کنترل می کنند. اما آن ها قادر به رانندگی بدون حضور انسان نیستند. حال آنکه هوش مصنوعی و فناوری های یادگیری عمیق، با استفاده از حسگرهای پیشرفته و نقشه برداری مسیر، کمک می کنند تا اتومبیل ها کاملاً خودمختار و ایمن تر از خودروهای رانده شده توسط انسان حرکت کنند.
مسیر پیشرفت اتومبیل های خودران دارای چندین سطح است:
• سطح 0: اتومبیل به طور کامل توسط انسان هدایت می شود.
• سطح 1: فرمان، ترمز، شتاب، پارکینگ و سایر کارکردها می توانند به صورت اتوماتیک توسط اتومبیل انجام شوند، اما راننده همیشه آماده است تا کنترل اتومبیل را به دست بگیرد.
• سطح 2: حداقل یک سیستم کمک به راننده کاملا خودکار وجود دارد (مانند کنترل سرعت و مسیر حرکت) اما راننده هوشیار است تا در صورت عدم موفقیت سیستم، حوادث یا اشیاء را تشخیص داده و عکس العمل نشان دهد.
• سطح 3: رانندگان می توانند هنگامی که شرایط محیطی و ترافیکی را مناسب دیدند، عملکردهای اصلی را به طور کامل به وسیله نقلیه واگذار کنند. در این سطح، برخلاف سطوح قبلی، نیازی به نظارت دائمی توسط راننده وجود ندارد.
• سطح 4: وسیله نقلیه کاملاً خودمختار بوده و قادر به انجام کلیه عملکردهای مهم رانندگی در ایمنی و نظارت بر شرایط جاده برای یک سفر کامل است.
• سطح 5: وسیله نقلیه کاملا خودمختار عمل می کند؛ و به اثبات می رسد که بهتر از یک انسان رانندگی می کند.
امروزه بیشتر اتومبیل های موجود در جاده ها در سطح صفر قرار دارند؛ در حالی که بسیاری از وسایل نقلیه تولید شده در چند سال گذشته دارای استقلال سطح 1یا 2 هستند. سطوح بالاتر نیازمند هوش مصنوعی هستند. سطح 4 و 5 با استفاده از فناوریهای پیشرفته یادگیری عمیق ساخته خواهد شد.
نیازهای عملکردی در رانندگی بدون راننده
رانندگی بدون راننده نیاز به مجموعه ای پیچیده از عملکردهای پیشرفته برای سنجش آنچه اتفاق می افتد دارد. نقشه برداری از مسیر، ایجاد سیاست های رانندگی برای مقابله با موقعیت های قابل پیش بینی و غیرقابل پیش بینی نمونه هایی از آن هستند.
حسگر:
بیشتر اتومبیل های هوشمند برای درک محیط رانندگی از: LiDAR (روشی که از نور لیزر برای اندازه گیری فاصله استفاده می کند)، رادار (برای تشخیص اشیاء) و دوربین های دیجیتال استفاده می کنند. آن ها شرایط را بررسی کرده و تحلیل می کنند:
• اشیاء ساکن مانند محدوده جاده، گارد ریل ها و خطوط مخصوص دوچرخه
• اشیاء متحرک از جمله سایر وسایل نقلیه ، عابرین و دوچرخه ها
• داده ها و علائم مانند خطوط، مناطق پارکینگ، علائم راهنمایی و رانندگی و چراغ ها
سنجش دقیق در اتومبیل های بدون راننده :
شکل 1: سنسورهای چندگانه ، وسایل نقلیه خودمختار را قادر می سازند تا هم اشیاء متحرک و هم ایستا را با دقت تشخیص دهند. این سنسورها صحنه را در کل حاشیه خودرو چندین بار در ثانیه ردیابی و طبقه بندی می کند.
مسیریاب:
اتومبیل های هوشمند از داده های GPS برای رسیدن باز نقطه A به نقطه B استفاده می کنند. اما همچنان به ترجیحات راننده نیز نیاز دارند تا نقشه برداری از مسیر را تا حد امکان کارآمدتر کنند.
سیاست رانندگی:
سیستم های خودکار باید بدانند چه زمانی خطوط را عوض کرده یا سرعت را تغییر دهند. رانندگان انسانی مجموعه ای از سیاست ها را متناسب با سبک رانندگی و شرایط رانندگی خود ایجاد می کنند. اتومبیل های بدون راننده نیز برای اتخاذ تصمیمات ایمن، به مجموعه ای از سیاست های جامع نیاز دارند.
سیستم عامل های اتوموبیل های خودران باید:
o به طور پیوسته اجرا شوند
o قادر به فعالیت ایمن در شرایط سخت ( هوای بد یا ترافیک سنگین) و شب باشند
o به رفتار غیر قابل پیش بینی سایر وسایل نقلیه، عابرین، تعمیرات جاده ای و غیره بدون درصد خطا واکنش نشان دهند.
هر یک از این نیازها بیانگر چندین چالش در فناوری است. یکی از مهمترین الزامات که به درستی توسط یادگیری عمیق پوشش داده می شود؛ توانایی درک کل تصویر در لحظه است (که توسط چندین سنسور شکل می گیرد).
شبکه های عصبی صحنه را ترسیم می کنند
سخت افزار سنسور داخلی ساخته شده توسط تسلا: شامل 8 دوربین فراگیر، 12 سنسور فراصوت به علاوه رادار روبرو است. همه این سنسورها چندین بار در ثانیه داده ها را جمع آوری می کنند.
اگر سنسورها را چشم یک وسیله نقلیه در نظر بگیریم، شبکه های عصبی مصنوعی به عنوان قشر مغز عمل کرده و داده های حسگر را به یک تصویر قابل استفاده از فضای جاده تبدیل می کند. شبکه های عصبی صحنه اطراف اتومبیل در حال حرکت را نقاشی می کنند، حد مجاز سرعت ارسال شده را خوانده و از آن پیروی می کنند. علامت توقف و چراغ سبز را تشخیص می دهد؛ افراد، مشاغل و حتی زباله های موجود در جاده را شناسایی می کنند.
تشخیص خطر اتومبیل:
شکل 2: اتومبیل ها با قابلیت انتقال هشدارهای ایمنی، می توانند حضور موانع پیش رو را به اتومبیل های پشت سر خود اطلاع دهند تا از بروز حوادث جلوگیری کنند.
مهندسی نرم افزار فعلی و ابزارهای مبتنی بر قوانین، به اندازه کافی قدرتمند نیستند تا مشکلات پیچیده ای مانند تفسیر داده های سنسور و رانندگی مستقل را حل کنند. متغیرهای بسیار زیادی وجود دارد. مسائل پیش بینی نشده بسیاری وجود دارد که انسان باید آن ها را پیش بینی کرده و برایشان برنامه ریزی کند.
اساسی ترین تکنولوژی های یادگیری عمیق استفاده شده در اتومبیل های بدون راننده عبارتند از: شبکه های عصبی پیچشی، شبکه های عصبی بازگشتی و شبکه های عصبی تقویتی.
شبکه های عصبی پیچشی (CNN):
شبکه های عصبی پیچشی عمدتا برای پردازش اطلاعات مکانی مانند تصاویر مورد استفاده قرار می گیرند؛ و می توان آنها را به عنوان استخراج کننده ویژگی های تصویر مورد استفاده قرار داد. قبل از ظهور یادگیری عمیق سیستم های بینایی رایانه ای بر اساس ویژگی های دستی به کار گرفته می شدند. شبکه های عصبی پیچشی را با تقریبی می توان با قسمتهای مختلف قشر بینایی پستانداران مقایسه کرد.
شبکه های عصبی بازگشتی(RNN):
در بین روشهای یادگیری عمیق ، شبکه های عصبی بازگشتی در پردازش داده هایی مانند متن یا جریان های ویدیویی عملکرد خوبی دارند. برخلاف شبکه های عصبی پیچشی، شامل یک حلقه بازخورد وابسته به زمان در سلول حافظه خود هستند.
شبکه های عصبی تقویتی (DRL):
در شبکه های عصبی تقویتی یک عامل قادر به یادگیری در محیطی تعاملی با استفاده از آزمون و خطاها و تجربه های خود است. در رانندگی بدون راننده با این روش، وظیفه اصلی، یادگیری سیاست های رانندگی بهینه از نقطه ای به نقطه دیگر است.
مهمترین امر برای آینده رانندگی بدون راننده، دیپ لرنینگ و شبکه های عصبی هستند؛ که یادگیری مداوم از موقعیت ها و شرایط جدید در یک محیط رانندگی در حال تغییر را امکان پذیر می سازند.
جمع بندی:
فناوری اتومبیل های خودران طی یک دهه گذشته پیشرفت ویژه ای داشته اند، خصوصا به دلیل پیشرفت در زمینه هوش مصنوعی و یادگیری عمیق. این اتومبیل ها، سیستم های پیچیده ای هستند که می بایست با خیال راحت مسافر یا محموله را از مبدا به مقصد سوق دهند. ظهور و استقرار ماشین های بدون راننده در جاده های عمومی با چالش های بسیاری روبرو است. مهمترین چالش این است که، سیستمهای یادگیری عمیق به پایگاههای داده آموزشی بزرگ متکی هستند و به سخت افزار محاسباتی گسترده نیاز دارند.
منبع:
https://amanjacademy.com/how-self-driving-cars_become-to-reality/